## Neural Feedback Processing During a Guessing and a Learning Paradigm:

## Comparison of the RewP and the P300 Across Tasks

Franziska Jüres¹, Ruth Wewers¹, Norbert Kathmann¹, \& Julia Klawohn¹,2
${ }^{1}$ Department of Psychology, Humboldt-Universität zu Berlin, Germany, ${ }^{2}$ Department of Medicine, MSB Medical School Berlin, Germany

## BACKGROUND

- Evaluating and learning from feedback is essential to maximize gains and minimize loss.
- Two event-related potentials (ERPs), namely the Reward Positivity (RewP) and the P300, have been identified as electrophysiological correlates of feedback processing in reward tasks., ${ }^{1,2}$
- It is still unclear how learning and expectancy modulate RewP and P300 elicited by monetary feedback intraindividually.


## RESESARCH AIM

- We expected RewP enhancement following rewards ${ }^{2}$ and associations between ERPs across paradigms.
- We further investigated potential modulatory effects of learning processes on P300 and RewP.


## METHODS

## SAMPLE

- 32 healthy participants (females $n=26$ ) aged $18-56$ years $(M=27.83, S D=12.26)$
- Executive functions:

TMT A: $M=23.01, S D=6.76$, TMT B: $M=55.91, S D=$ 28.40

## GUESSING PARADIGM:

Doors Task


- 60 trials with random, monetary feedback (30 win / 30 loss)


## LEARNING PARADIGM:

Reversal Learning Task


- 140-160 trials
- One doors is associated with a monetary reward, the other door with a monetary loss
- Feedback is probabilistic (70:30)
- Contingencies change after reaching a learning criterion (6-10 correct choices)


## DATA ANALYSIS

- $2 \times 2$ repeated measures analysis of variance (ANOVA) for ERPs with feedback (positive/negative) and task (guessing/learning)
- $2 \times 2$ univariate ANOVA for ERPs with feedback valence (positive/negative) and validity (valid/invalid)
- Pearson correlations between ERPs and feedback type

RESULTS
ERPs ACROSS PARADIGMS: RewP and P300


FEEDBACK VALIDITY IN THE REVERSAL PARADIGM: RewP and P300


## ANOVAs

RewP amplitudes differed within task depending on feedback valence but not across tasks. (Fig. \& \& 2)

- Doors positive feedback > Doors negative feedback mDiff $=3.436, p=006$
- Learning positive feedback > Learning negative feedback MDiff $=2.168, p=016$

RewP amplitudes differed within the learning task depending on feedback expectancy.

- Learning positive valid> Learning negative invalid feedback
- Learning positive invalid $>$ Learning negative invalid feedback



P300 amplitudes differed across tasks depending on feedback valence. (fig. 1 \& 2)

- Doors positive feedback > Learning positive feedback MDiff 5 5.41, $p=001$
- Learning positive feedback < Learning negative feedback MDiff $=2.495, p=001$

P300 amplitudes differed within task depending on feedback expectancy.

- Learning positive valid < Learning negative valid feedback
- Learning positive valid <

Learning negative invalid feedback


## SUMMARY

- First results suggest an association between RewP amplitudes across paradigms. For the P300, this relations was only evident for positive feedback


## TO COME

- Analysis on behavioral outcomes with computational modeling
- Large-scale data-collection including patients with internalizing disorders, aiming for a sample of 400 patients

Expectancy of feedback shows modulatory effects on ERPs in the reversal learning task. Yet, there is no feedback valence-specific effect.

Doors - positive Learning- positive

## DISCUSSION \& CONCLUSION

